

§1. Noțiunea de permutare, operații, proprietăți

Fie A o mulțime finită cu n elemente, unde $n \in \mathbb{N}^*$. Natura elementelor mulțimii A nu prezintă interes pentru studiul pe care îl întreprindem în continuare și le vom nota cu 1, 2, ..., i, ..., n, la fel ca pe primele n numere naturale diferite de zero. Așadar $A = \{1, 2, ..., n\}$. Vom presupune că între elementele lui A avem relația de ordine naturală:

$$1 < 2 < ... < i < ... < n$$
.

Definiție)

Dacă $A = \{1, 2, ..., n\}$, atunci o aplicație bijectivă $\sigma : A \rightarrow A$ se numește **permutare de grad** n.

Vom nota cu S_n mulțimea tuturor permutărilor de grad n.

O permutare $\sigma \in S_n$ este prezentată, de regulă, cu ajutorul unui tablou cu două linii:

(*)
$$\sigma = \begin{pmatrix} 1 & 2 & \dots & i & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(i) & \dots & \sigma(n) \end{pmatrix}$$

în prima linie fiind trecute, în ordine naturală, numerele 1, 2, ..., i, ..., n, iar în cea de a doua linie fiind inserate imaginile acestora prin σ , anume $\sigma(1), \sigma(2), ..., \sigma(i), ..., \sigma(n)$.

Cum σ este aplicație bijectivă, în cea de a doua linie a tabloului (*), fiecare număr natural i, $1 \le i \le n$, apare numai o singură dată.

Permutarea
$$\sigma \in S_5$$
, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 2 & 4 \end{pmatrix}$ este aplicația bijectivă

$$\sigma: \{1, 2, 3, 4, 5\} \rightarrow \{1, 2, 3, 4, 5\}$$
 care acționează astfel: $\sigma(1) = 3$, $\sigma(2) = 5$, $\sigma(3) = 1$, $\sigma(4) = 2$ si $\sigma(5) = 4$.

A da o permutare $\sigma \in S_n$ revine la a insera în cea de a doua linie a tabloului (*) numerele 1, 2,..., i,..., n într-o anumită ordine. Dacă întâi precizăm valoarea lui $\sigma(1)$, pentru aceasta avem n posibilități. Apoi, îndată ce $\sigma(1)$ a fost fixat, pentru $\sigma(2)$ rămân n-1 posibilități. După ce se alege și $\sigma(2)$, rămân n-2 posibilități pentru $\sigma(3)$ ș.a.m.d. Rezultă că numărul permutărilor de grad n este egal cu $n \cdot (n-1) \cdot (n-2) \cdot ... \cdot 2 \cdot 1 = n!$

Dacă în cea de a doua linie a tabloului (*) trecem primele n numere naturale nenule

în ordine naturală, se obține permutarea
$$e \in S_n$$
, $e = \begin{pmatrix} 1 & 2 & \dots & i & \dots & n \\ 1 & 2 & \dots & i & \dots & n \end{pmatrix}$, numită $permu$ -

tarea identică. Avem e(i) = i, oricare ar fi $i \in A = \{1, 2, ..., n\}$.

Evident e coincide cu aplicația identică a mulțimii $A = \{1, 2, ..., n\}$.

Dacă σ , $\pi \in S_{\pi}$, atunci *compusa* $\sigma \circ \pi$ a permutării σ cu permutarea π :

$$\sigma \circ \pi : \{1, 2, 3, 4, 5\} \rightarrow \{1, 2, 3, 4, 5\}, (\sigma \circ \pi)(i) = \sigma(\pi(i))$$

este, de asemenea, permutare de grad n deoarece compusa a două aplicații bijective este o aplicație bijectivă. Reprezentarea lui $\sigma \circ \pi$ sub formă de tablou cu două linii este:

$$\sigma \circ \pi = \begin{pmatrix} 1 & 2 & \dots & i & \dots & n \\ \sigma(\pi(1)) & \sigma(\pi(2)) & \dots & \sigma(\pi(i)) & \dots & \sigma(\pi(n)) \end{pmatrix}.$$

Exemplu Dacă σ , $\pi \in S_4$, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$, $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$, atunci

$$\sigma \circ \pi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ \sigma(\pi(1)) & \sigma(\pi(2)) & \sigma(\pi(3)) & \sigma(\pi(4)) \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 \\ \sigma(2) & \sigma(1) & \sigma(4) & \sigma(3) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}.$$

De asemenea,

$$\sigma \circ e = \begin{pmatrix} 1 & 2 & 3 & 4 \\ \sigma(e(1)) & \sigma(e(2)) & \sigma(e(3)) & \sigma(e(4)) \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 \\ \sigma(1) & \sigma(2) & \sigma(3) & \sigma(4) \end{pmatrix} = \sigma \, \text{si}$$

$$e \circ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ e(\sigma(1)) & e(\sigma(2)) & e(\sigma(3)) & e(\sigma(4)) \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 \\ e(3) & e(4) & e(1) & e(2) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = \sigma \, .$$

Orice permutare $\sigma \in S_n$ este aplicație bijectivă, deci admite inversă, de forma:

$$\sigma^{-1}: \{1, 2, ..., n\} \to \{1, 2, ..., n\},\$$

 $\sigma^{-1}(j) = i \Leftrightarrow j = \sigma(i),$

definită prin:

Se observă că σ^{-1} este tot permutare de grad n.

Cum $(\sigma \circ \sigma^{-1})(j) = (\sigma(\sigma^{-1}(j))) = \sigma(i) = j$ și $(\sigma^{-1} \circ \sigma)(i) = (\sigma^{-1}(\sigma(i))) = \sigma^{-1}(j) = i$, avem $\sigma \circ \sigma^{-1} = \sigma^{-1} \circ \sigma = e$.

Exemplu Dacă
$$\sigma \in S_5$$
, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 3 & 1 \end{pmatrix}$, avem $\sigma(1) = 4$, $\sigma(2) = 2$, $\sigma(3) = 5$, $\sigma(4) = 3$,

$$\sigma(5) = 1$$
, deci $\sigma^{-1}(4) = 1$, $\sigma^{-1}(2) = 2$, $\sigma^{-1}(5) = 3$, $\sigma^{-1}(3) = 4$ și $\sigma^{-1}(1) = 5$, de unde:

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 4 & 1 & 3 \end{pmatrix} \in S_5 \text{ si } \sigma \circ \sigma^{-1} = \sigma^{-1} \circ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} = e.$$

Proprietăți ale operației de compunere a aplicațiilor de mulțimi se regăsesc și pentru operația de compunere a permutărilor. Astfel:

- (1) $\forall \sigma, \pi, \tau \in S_n, (\sigma \circ \pi) \circ \tau = \sigma \circ (\pi \circ \tau)$ (asociativitate);
- (2) $\forall \sigma \in S_n$, $\sigma \circ e = e \circ \sigma = \sigma$ (e este element neutru);
- (3) $\forall \sigma \in S_n, \exists \sigma^{-1} \in S_n, \sigma \circ \sigma^{-1} = \sigma^{-1} \circ \sigma = e$ (orice permutare are *inversă*).

Definiție

 $\widetilde{\operatorname{Daca} \sigma \in S_n}$, atunci submulțimea A_{σ} a mulțimii $A = \{1, 2, ..., n\}, \ A_{\sigma} \stackrel{def}{=} \{i \in A | \sigma(i) \neq i\}$ se numește **suportul** permutării σ .

Evident $A_{\sigma} = \emptyset \Leftrightarrow \sigma = e$.

Exemplu Dacă
$$\sigma \in S_6$$
, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 5 & 4 & 6 & 1 \end{pmatrix}$, atunci $A_{\sigma} = \{1, 3, 5, 6\}$.

Definitie

O permutare $\tau \in S_n$, $n \ge 2$, se numește **transpoziție** dacă există i și j în $A = \{1, 2, ..., n\}$, $i \neq j$, astfel încât $\tau(i) = j$, $\tau(j) = i$ și $\tau(k) = k$, $\forall k \in A \setminus \{i, j\}$.

Transpoziția $\tau \in S_n$ pentru care $\tau(i) = j$ și $\tau(j) = i$ se notează cu $\tau = (i, j)$ sau $\tau = (j, i)$.

În mulțimea S_n a permutărilor de grad $n, n \ge 2$, există $C_n^2 = \frac{n(n-1)}{2}$ transpoziții.

Suportul unei transpoziții $\tau = (i, j)$ este $A_{\tau} = \{i, j\}$.

Exemple 1. Permutările
$$\tau_1, \tau_2, \tau_3 \in S_3, \tau_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 3 \end{pmatrix}, \tau_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \end{pmatrix}$$

și $\tau_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = (1, 2)$ sunt singurele transpoziții din S_3 .

2. Dacă
$$\tau = (2, 5) \in S_6$$
, atunci $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 3 & 4 & 2 & 6 \end{pmatrix}$.

Lema 1

Dacă $\tau = (i, j) \in S_n$ este o transpoziție, atunci $\tau \neq e$ și $\tau^2 = e$.

Demonstrație. Cum $i \neq j$ și $\tau(i) = j$, avem $\tau \neq e$. Cum $\tau^2(i) = \tau(\tau(i)) = \tau(j) = i$, $\tau^2(j) = \tau(\tau(j)) = \tau(\tau(j$ $= \tau(i) = j$ și $\tau^2(k) = \tau(\tau(k)) = \tau(k) = k$, oricare ar fi $k \neq i, j$, rezultă că: $\tau^2 = e$.

Lema 2 Fie $\sigma \in S_n$, $\sigma \neq e$, $i \in A_{\sigma}$ și $j = \sigma(i)$. Au loc următoarele:

- $1, j \in A_{\sigma}$.

2. Dacă $\tau = (i, j)$ și $\pi = \sigma \circ \tau$, atunci $A_{\pi} \subset A_{\sigma}$, $A_{\pi} \neq A_{\sigma}$.

Demonstrație. 1. Cum $i \in A_{\sigma}$, avem $i \neq \sigma(i) = j$ și deci, dacă $\sigma(j) = j = \sigma(i)$, rezultă j = i. Contradicție. Așadar, $\sigma(j) \neq j$, deci $j \in A_{\sigma}$.

2. Dacă $\sigma(k) = k$, atunci $k \neq i$ și $k \neq j$, deci $\pi(k) = \sigma(\tau(k)) = \sigma(k) = k$. Rezultă că $A_{\pi} \subseteq A_{\sigma}$. Avem $j \in A_{\sigma}$ și cum $\pi(j) = \sigma(\tau(j)) = \sigma(i) = j$, rezultă că A_{π} este inclus strict în A_{σ} .

Observăm că o transpoziție $\tau = (i,j) \in S_n$ este o permutare a cărei acțiune asupra numerelor 1, 2, ..., i, ..., j, ..., n

revine la a permuta între ele numerele i și j și a lăsa neschimbate celelalte numere:

Teorema următoare stabilește că acțiunea unei permutări oarecare $\sigma \in S_n$ asupra numerelor 1, 2,..., n revine la a actiona (într-o anumită ordine) asupra acestora cu un număr finit de transpoziții.

Teorema 1

Orice permutare $\sigma \in S_n$, $n \ge 2$, se poate reprezenta ca un produs finit de transpoziții.

Demonstrație. Să notăm cu m_{σ} numărul elementelor lui A_{σ} . Inducție după numărul m_{σ} . Dacă $m_{\sigma} = 0$, atunci $A_{\sigma} = \emptyset$ și deci $\sigma = e$. Dacă $\tau = (1, 2)$, avem: $e = \tau \circ \tau$. Dacă $A_{\sigma} \neq \emptyset$, fie $i \in A_{\sigma}, j = \sigma(i), \ \tau = (i, j)$ și $\pi = \sigma \circ \tau$. Cum $A_{\pi} \subset A_{\sigma}$, avem $m_{\pi} < m_{\sigma}$. Conform ipotezei de inducție, există transpozițiile $\tau_1, \tau_2, ..., \tau_r \in S_n$ astfel încât $\sigma \circ \tau = \pi = \tau_1 \circ \tau_2 \circ ... \circ \tau_r$.

Înmulțind la dreapta cu τ și ținând cont că $\tau \circ \tau = e$, se obține $\sigma = \tau_1 \circ \tau_2 \circ \dots \circ \tau_r \circ \tau$.

Observatie:

Fie $\sigma \in S_n$, $\sigma \neq e$, și $i_1 \in A_\sigma$. Șirul $i_1, i_2 = \sigma(i_1), i_3 = \sigma(i_2), \ldots$ are termenii în A_σ care este mulțime finită, deci șirul precedent are termeni care se repetă. Cum σ este o aplicație injectivă, primul termen care se repetă este i_1 , și să zicem că a doua apariție a sa este $i_{s+1} = i_1$. Cum $i_1 \in A_{\sigma}$, avem $\sigma(i_1) \neq i_1$, deci $s \geq 2$.

Fie
$$\pi = \sigma \circ (i_{s-1}, i_s) \circ (i_{s-2}, i_{s-1}) \circ ... \circ (i_2, i_3) \circ (i_1, i_2).$$

Se verifică imediat că: $A_{\pi} = A_{\sigma} \setminus \{i_1, i_2, \dots, i_s\}$ și $\pi(k) = \sigma(k)$ oricare ar fi $k \neq i_1, i_2, \dots, i_s$. Avem: $\sigma = \pi \circ (i_1, i_2) \circ (i_2, i_3) \circ \dots \circ (i_{s-1}, i_s)$.

Dacă $\pi = e$, egalitatea de mai sus reprezintă o descompunere a lui σ în produs de transpoziții. Dacă $\pi \neq e$, se aplică permutării π tratamentul precedent aplicat lui σ . Se continuă până se obtine permutarea e și, în final, vom putea preciza descompunerea lui σ în produs de transpoziții.

Exemplu Fie
$$\sigma \in S_7$$
, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 6 & 2 & 7 & 4 & 3 & 1 \end{pmatrix}$.

Avem $A_{\sigma}=\{1,\,2,\,3,\,4,\,5,\,6,\,7\}$. Luăm $i_1=1\in A_{\sigma}$. Rezultă $i_1=1,\,i_2=\sigma(1)=5,\,i_3=\sigma(5)=4,\,i_4=\sigma(4)=7,\,i_5=\sigma(7)=1$. Dacă

definim:
$$\pi \stackrel{\text{def}}{=} \sigma \circ (4,7) \circ (5,4) \circ (1,5)$$
 (*),

atunci obținem că $A_{\pi} = A_{\sigma} \setminus \{1, 5, 4, 7\} = \{2, 3, 6\}.$

Fie $j_1 = 2$. Rezultă: $j_2 = \pi(2) = \sigma(2) = 6$, $j_3 = \pi(6) = \sigma(6) = 3$, $j_4 = \pi(3) = \sigma(3) = 2$ și deci, dacă: $\theta = \pi \circ (6, 3) \circ (2, 6)$, atunci $A_{\theta} = A_{\pi} \setminus \{2, 3, 6\} = \emptyset$.

Aşadar $\theta = e$, deci $e = \pi \circ (6, 3) \circ (2, 6)$. Înmulțind la dreapta cu (2, 6) și apoi cu (6, 3), obtinem $\pi = (2, 6) \circ (6, 3)$.

Înlocuind în (*) și înmulțind succesiv la dreapta cu (1, 5), (5, 4) și (4, 7), obținem: $\sigma = (2, 6) \circ (6, 3) \circ (1, 5) \circ (5, 4) \circ (4, 7).$

§2. Inversiuni. Semnul unei permutări

Definitie

Fie $\sigma \in S_n$, $n \ge 2$. Spunem că permutarea σ prezintă o **inversiune** pentru perechea ordonată (i, j), cu $1 \le i \le j \le n$, dacă $\sigma(i) > \sigma(j)$. Notăm cu $Inv(\sigma)$ numărul tuturor

inversiunilor permutării σ . Numărul $\varepsilon(\sigma)$, $\varepsilon(\sigma) = (-1)^{lnv(\sigma)} \in \{-1,1\}$ se numește semnul sau signatura permutării σ.

Vom spune că permutarea σ este **pară**, respectiv **impară** dacă numărul $Inv(\sigma)$ este par, respectiv impar, ceea ce revine la $\varepsilon(\sigma) = 1$, respectiv $\varepsilon(\sigma) = -1$.

Să observăm că, pentru i fixat, numărul perechilor (i, j) cu $i < j \le n$, pentru care σ prezintă inversiunii este egal cu numărul elementelor din linia a doua a tabelului:

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & i & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(i) & \dots & \sigma(n) \end{pmatrix}$$

aflate în dreapta lui $\sigma(i)$, mai mici ca $\sigma(i)$.

Exemple 1. Fie
$$\sigma \in S_5$$
, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{pmatrix}$.

În dreapta lui $\sigma(1) = 3$ există 2 numere mai mici decât 3, în dreapta lui $\sigma(2) = 2$ există 1 număr mai mic decât 2, în dreapta lui $\sigma(3) = 5$ există 2 numere mai mici decât 5, iar în dreapta lui $\sigma(4) = 1$ nu există numere mai mici decât 1.

Obtinem că: $Inv(\sigma) = 2 + 1 + 2 + 0 = 5$ și $\varepsilon(\sigma) = (-1)^5 = -1$, deci σ este permutare impară.

2. Dacă $e \in S_n$, $n \ge 2$, este permutarea identică, atunci Inv(e) = 0 și $\varepsilon(e) = (-1)^0 = 1$. Deci, permutarea identică *e* este pară.

Lema 3

Fie $\overbrace{\sigma, \tau \in S_n}, n \ge 2$, unde $\tau = (i, j), 1 \le i < j \le n$. Are loc relația: $\varepsilon(\sigma \circ \tau) = -\varepsilon(\sigma)$. Altfel spus:

Când compunem o permutare σ cu o transpoziție τ , permutarea σ își schimbă semnul (paritatea).

Demonstratic. Fix $\pi = \sigma \circ \tau$. Avem $\pi(i) = \sigma(\tau(i)) = \sigma(j)$, $\pi(j) = \sigma(\tau(j)) = \sigma(i)$ si $\pi(k) = \sigma(\tau(k)) = \sigma(k)$, oricare ar fi $k \neq i, j$. Aşadar:

$$\pi = \begin{pmatrix} 1 & 2 & \dots & i & \dots & j & \dots & n \\ \pi(1) & \pi(2) & \dots & \pi(i) & \dots & \pi(j) & \dots & \pi(n) \end{pmatrix} = \begin{pmatrix} 1 & 2 & \dots & i & \dots & j & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(j) & \dots & \sigma(i) & \dots & \sigma(n) \end{pmatrix}$$

Demonstrăm prin inducție după numărul m = j - i.

Dacă
$$m = 1$$
, atunci: $\pi = \begin{pmatrix} 1 & 2 & \dots & i & i+1 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(i+1) & \sigma(i) & \dots & \sigma(n) \end{pmatrix}$,

de unde rezultă că:
$$Inv(\pi) = \begin{cases} Inv(\sigma) + 1, & dacă \sigma(i+1) > \sigma(i) \\ Inv(\sigma) - 1, & dacă \sigma(i+1) < \sigma(i) \end{cases}$$

Avem:
$$\varepsilon(\sigma \circ \tau) = (-1)^{lnv(\sigma)\pm 1} = -(-1)^{lnv(\sigma)} = -\varepsilon(\sigma)$$
.

Presupunem că m > 1. Folosind definiția compunerii permutărilor, se observă că pentru orice număr $s \neq i, j$, avem: $(i, j) = (i, s) \circ (s, j) \circ (i, s)$, iar în particular: $\tau = (i, j) = (i, i + m) = (i, i + 1) \circ (i + 1, j) \circ (i, i + 1)$.

Înmulțirea lui σ la dreapta cu τ revine la a înmulți pe σ succesiv cu transpozițiile (i, i+1), (i+1, j) și (i, i+1). Conform cazului m=1 și ipotezei de inducție (j-(i+1) < m) σ își schimbă paritatea de trei ori, de unde rezultă: $\varepsilon(\sigma \circ \tau) = -\varepsilon(\sigma)$.

Corolar)

Orice transpoziție τ este permutare impară.

Demonstrație. Cum $e = \tau \circ \tau$, avem $1 = \varepsilon(e) = \varepsilon(\tau \circ \tau) = -\varepsilon(\tau)$, de unde rezultă $\varepsilon(\tau) = -1$.

Dacă n>1, notăm cu A_n mulțimea permutărilor pare din S_n și cu B_n mulțimea permutărilor impare. Evident, $S_n=A_n\cup B_n$, $A_n\cap B_n=\varnothing$.

Fie $\tau = (1, 2)$. Dacă $\sigma \in A_n$, $n \ge 2$, atunci din lema 3 rezultă că $\sigma \circ \tau \in B_n$, iar dacă $\pi \in B_n$, atunci $\pi \circ \tau \in A_n$. Putem considera aplicația $f: A_n \to B_n$, $f(\sigma) = \sigma \circ \tau$.

Dacă $f(\sigma_1) = f(\sigma_2)$, atunci $\sigma_1 \circ \tau = \sigma_2 \circ \tau$ și înmulțind la dreapta cu τ , obținem $\sigma_1 = \sigma_2$. Așadar f este aplicație imjectivă.

Dacă $\pi \in B_n$ și $\sigma = \pi \circ \tau \in A_n$, atunci $f(\sigma) = \sigma \circ \tau = \pi \circ \tau \circ \tau = \pi \circ e = \pi$, deci f este și surjectivă.

Prin urmare, f este aplicație bijectivă. Rezultă că numărul permutărilor pare este acelasi cu numărul permutărilor impare, și anume n!/2.

Exerciții rezolvate

1. Fie
$$\sigma \in S_6$$
, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 4 & 1 & 6 & 2 \end{pmatrix}$.

- a) Să se calculeze numerele $Inv(\sigma)$ și $\varepsilon(\sigma)$.
- b) Să se reprezinte σ ca produs de transpoziții.

Rezolvare:

a) În dreapta lui $\sigma(i)$ din a doua linie a lui σ sunt două numere mai mici ca $\sigma(i)$ când i = 1, trei când i = 2, două când i = 3, zero când i = 4, unul când i = 1.

Aşadar:
$$Inv(\sigma) = 2 + 3 + 2 + 0 + 1 = 8$$
 şi $\varepsilon(\sigma) = (-1)^8 = 1$.

b) Avem $A_{\sigma} = \{1, 2, 3, 4, 5, 6\}$. Luăm $i_1 = 1 \in A_{\sigma}$. Avem: $i_1 = 1, i_2 = \sigma(1) = 3, i_3 = \sigma(3) = 4, i_4 = \sigma(4) = 1$.

Aşadar, dacă
$$\pi \stackrel{def}{=} \sigma \circ (3,4) \circ (1,3)$$
, atunci: $A_{\pi} = A_{\sigma} \setminus \{1, 3, 4\} = \{2, 5, 6\}$.

Fie
$$j_1 = 2 \in A_{\pi}, j_2 = \pi(2) = \sigma(2) = 5, j_3 = \pi(5) = \sigma(5) = 6, j_4 = \pi(6) = \sigma(6) = 2.$$

Dacă θ =
$$\pi \circ (5, 6) \circ (2, 5)$$
, atunci $A_{\theta} = A_{\pi} \setminus \{2, 5, 6\} = \emptyset$, deci θ = e.

Avem
$$\pi = (2, 5) \circ (5, 6)$$
 și $\sigma = (2, 5) \circ (5, 6) \circ (1, 3) \circ (3, 4)$.

- **2.** a) Dacă $\sigma \in S_n$ și $\sigma = \tau_1 \circ \tau_2 \circ ... \circ \tau_m$ este o descompunere a lui σ în produs de transpoziții, atunci $\varepsilon(\sigma) = (-1)^m$.
 - b) Oricare ar fi σ , $\pi \in S_n$, avem $\varepsilon(\sigma \circ \pi) = \varepsilon(\sigma)\varepsilon(\pi)$.
 - c) Produsul a două permutări de aceeași paritate (de parități diferite) este o permutare pară (respectiv impară).

Rezolvare:

- a) Dacă m = 1, avem $\sigma = \tau_1$, deci $\varepsilon(\sigma) = \varepsilon(\tau_1) = -1 = (-1)^1$. Dacă m > 1 și $\varepsilon(\tau_1 \circ \tau_2 \circ \dots \circ \tau_{m-1}) = (-1)^{m-1}$, atunci $\varepsilon(\tau_1 \circ \tau_2 \circ \dots \circ \tau_m) = -\varepsilon(\tau_1 \circ \tau_2 \circ \dots \circ \tau_{m-1}) = -(-1)^{m-1} = (-1)^m$.
- b) Fie $\sigma = \tau_1 \circ \tau_2 \circ ... \circ \tau_m$ și $\pi = \tau_1' \circ \tau_2' \circ ... \circ \tau_m'$ descompuneri ale lui σ și π în produs de transpoziții. Cum $\sigma \circ \pi = \tau_1 \circ \tau_2 \circ ... \circ \tau_m \circ \tau_1' \circ \tau_2' \circ ... \circ \tau_{m'}$, avem: $\varepsilon(\sigma \circ \pi) = (-1)^{m+m'} = (-1)^m (-1)^{m'} = \varepsilon(\sigma)\varepsilon(\pi).$
- c) Rezultă din punctul b).

Exerciții propuse

- 1. Fie σ , $\pi \in S_4$, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$, $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$.

 Calculati $\sigma \circ \pi$, $\pi \circ \sigma$, $(\sigma \circ \pi)^{-1}$, $\pi^{-1} \circ \sigma^{-1}$.
- **2.** Determinați $x \in S_5$, astfel încât:

a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 2 & 5 \end{pmatrix}$$
 $\circ x = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 3 & 2 & 4 \end{pmatrix}$;

b)
$$x \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 5 & 2 & 3 \end{pmatrix}$$
;

c)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 3 & 1 \end{pmatrix}$$
 $\circ x \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 4 & 5 & 3 \end{pmatrix}$.

- 3. Fie $\sigma \in S_4$, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$.
 - a) Calculați σ^2 , σ^3 , σ^4 , σ^{212} .
 - b) Avem $\sigma^k = e$ cu $k \in \mathbb{Z}$ dacă și numai dacă k este multiplu de 3.
- **4.** Dacă i_1 , i_2 , i_3 sunt trei numere distincte din $\{1, 2, ..., n\}$, $n \ge 3$, notăm cu (i_1, i_2, i_3) permutarea $\alpha \in S_n$ pentru care $\alpha(i_1) = i_2$, $\alpha(i_2) = i_3$, $\alpha(i_3) = i_1$ și $\alpha(k) = k$, $\forall k \ne i_1$, i_2 , i_3 . Arătați că:
 - a) $\alpha^3 = e$;
 - b) $\sigma \circ (i_1, i_2, i_3) \circ \sigma^{-1} = (\sigma(i_1), \sigma(i_2), \sigma(i_3)), \forall \sigma \in S_n$

- 5. a) Dacă σ , $\pi \in S_n$ și $A_{\sigma} \cap A_{\pi} = \emptyset$, atunci $\sigma \circ \pi = \pi \circ \sigma$. b) Dacă π , $\tau \in S_n$, $n \ge 5$, $\pi = (1, 2, 3)$ și $\tau = (4, 5)$, atunci $(\pi \circ \tau)^6 = e$.
- **6.** Fie $\pi \in S_5$, $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$.
 - a) Arătați că $\pi = (1, 3, 5) \circ (2, 4)$.
 - b) Arătați că $\sigma \circ \pi \circ \sigma^{-1} = (\sigma(1), \sigma(2), \sigma(3)) \circ (\sigma(2), \sigma(4))$, oricare ar fi $\sigma \in S_s$.
 - c) Determinați permutările $\sigma \in S_s$ cu proprietatea $\sigma \circ \pi \circ = \pi \circ \sigma$.
- 7. Descompuneți în produs de transpoziții permutările $\sigma \in S_s$ și $\pi \in S_r$,

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 2 \end{pmatrix}, \ \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 6 & 2 & 5 & 7 & 3 & 1 \end{pmatrix}.$$

- 8. Fie permutările $\sigma, \pi \in S_5, \ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}, \ \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 3 & 1 \end{pmatrix}.$
 - a) Să se determine $Inv(\sigma)$ și $Inv(\pi)$.
 - b) Determinați $\varepsilon(\sigma)$, $\varepsilon(\pi)$, $\varepsilon(\sigma \circ \sigma)$, $\varepsilon(\pi \circ \pi)$, $\varepsilon(\sigma \circ \pi)$ și $\varepsilon(\pi \circ \sigma)$.
- 9. Să se determine n astfel încât permutarea $\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ n & n-1 & \dots & 1 \end{pmatrix}$ să fie impară.
- **10.** Fie numerele $a_1, \ldots, a_n, b_1, \ldots, b_n$ astfel încât $0 < a_1 < a_2 < \ldots < a_n$ și $0 < b_1 < b_2 < \ldots < b_n$ Să se arate că oricare ar fi $\sigma \in S_n$ are loc relația:

$$a_1b_1 + a_2b_2 + \dots + a_nb_n \ge a_1b_{\sigma(1)} + a_2b_{\sigma(2)} + \dots + a_nb_{\sigma(n)}$$

11. Fie numerele reale $a_1, a_2, a_3 \in \left(\frac{1}{2}, 2\right)$. Arătați că oricare ar fi $\sigma \in S_3$, avem:

$$\left(a_{1} + \frac{1}{a_{\sigma(1)}}\right)\left(a_{2} + \frac{1}{a_{\sigma(2)}}\right)\left(a_{3} + \frac{1}{a_{\sigma(3)}}\right) < \left(\frac{5}{2}\right)^{3}.$$

- 12. Fie transpoziția $\tau = (i, j) \in S_n$, $1 \le i < j \le n$, și mulțimile: $S' = \{ \sigma \in S_n \mid \sigma(i) > \sigma(j) \}$, $S'' = \{ \sigma \in S_n \mid \sigma(i) < \sigma(j) \}$. Să se arate că: a) $S_n = S' \cup S''$ și $S' \cap S'' = \emptyset$.

 - b) Dacă $\sigma \in S'$, atunci $\sigma \circ \tau \in S''$.
 - c) Aplicația $f: S' \to S''$, $f(\sigma) = \sigma \circ \tau$, este bijectivă.